I am an associate professor at National Sun Yat-sen University. I did my PhD in Mathematics at Iowa State University, under the supervision of Leslie Hogben and Steve Butler. Then I did my postdoctoral research at the University of Victoria, working with Pauline van den Driessche. My research interests are:
For more details about me, please refer to my CV. Here is my schedule this semester, and you can reach me by chlin [at] math.nsysu.edu.tw. If you are interested in working with me, or you need a reference letter from me, please see Contact Me.
We are organizing the
in Kaohsiung from June 23 to 27, 2025. We look forward to seeing you there!
I use Sage intensively for my research, the codes I used frequently are put in GitHub.
I am organizing TWAG, a remote study group, regularly. Please feel free to let me know if you are interested. This study group is part of the HAMLT Lab, in which we aims to develop solid mathematics theory for machine learning.
I serve as the conference editor for IMAGE — ILAS' Bulletin. You are welcome to send announcement or report to me for conferences related to linear algebra.
I am trying to maintain the memorial page for Professor Li-Da Tong, my previous colleague and our friend. Please contact me if you have any suggestions for the page.
(Some paper not available here might have a preprint version on arXiv, or you can send an email to me. For nonpublic files, it is useless to add -nonpublic at the end of the link.)
[33] | A. Abiad, B. A. Curtis, M. Flagg, H. T. Hall, J. C.-H. Lin, and B. Shader. The inverse nullity pair problem and the strong nullity interlacing property. Linear Algebra Appl., 699:539--568, 2024. [ pdf ] |
[32] | C. Erickson, L. Gan, J. Kritschgau, J. C.-H. Lin, and S. Spiro. Complementary vanishing graphs. Linear Algebra Appl., 692:185--211, 2024. [ pdf ] |
[31] | P. Hell, J. Huang, and J. C.-H. Lin. Strong cocomparability graphs and slash-free orderings of matrices. SIAM J. Discrete Math., 38:828--844, 2024. [ pdf ] |
[30] | J. C.-H. Lin, P. Oblak, and H. Šmigoc. The liberation set in the inverse eigenvalue problem of a graph. Linear Algebra Appl., 675:1--28, 2023. [ pdf ] |
[29] | S. M. Fallat, H. T. Hall, J. C.-H. Lin, and B. Shader. The bifurcation lemma for strong properties in the inverse eigenvalue problem of a graph. Linear Algebra Appl., 648:70--87, 2022. [ pdf ] |
[28] | J. C.-H. Lin, P. Oblak, and H. Šmigoc. On the inverse eigenvalue problem for block graphs. Linear Algebra Appl., 631:379--397, 2021. [ pdf ] |
[27] | F. H. J. Kenter and J. C.-H. Lin. A zero forcing technique for bounding sums of eigenvalue multiplicities. Linear Algebra Appl., 629:138--167, 2021. [ pdf ] |
[26] | P. Hell, C. Hernandez-Cruz, J. Huang, and J. C.-H. Lin. Strong chordality of graphs with possible loops. SIAM J. Discrete Math., 35:362--375, 2021. [ pdf ] |
[25] | L. Hogben, J. C.-H. Lin, D. D. Olesky, and P. van den Driessche. The sepr-sets of sign patterns. Linear Multilinear Algebra, 26:2044--2068, 2020. [ pdf ] |
[24] | P. Hell, J. Huang, J. C.-H. Lin, and R. M. McConnell. Bipartite analogues of comparability and cocomparability graphs. SIAM J. Discrete Math., 34:1969--1983, 2020. [ pdf ] |
[23] | S. Butler, C. Erickson, S. M. Fallat, H. T. Hall, B. Kroschel, J. C.-H. Lin, B. Shader, N. Warnberg, and B. Yang. Properties of a q-analogue of zero forcing. Graphs Combin., 36:1401--1419, 2020. [ pdf ] |
[22] | A. Chan, S. M. Fallat, S. Kirkland, J. C.-H. Lin, S. Nasserasr, and S. Plosker. Complex Hadamard diagonalisable graphs. Linear Algebra Appl., 605:158--179, 2020. [ pdf ] |
[21] | J. C.-H. Lin, P. Oblak, and H. Šmigoc. The strong spectral property for graphs. Linear Algebra Appl., 598:68--91, 2020. [ pdf ] |
[20] | W. Barrett, S. Butler, S. M. Fallat, H. T. Hall, L. Hogben, J. C.-H. Lin, B. Shader, and M. Young. The inverse eigenvalue problem of a graph: Multiplicities and minors. J. Combin. Theory Ser. B, 142:276--306, 2020. [ pdf ] |
[19] | D. Ferrero, M. Flagg, H. T. Hall, L. Hogben, J. C.-H. Lin, S. Meyer, S. Nasserasr, and B. Shader. Rigid linkages and partial zero forcing. Electron. J. Combin., 26:#P2.43, 2019. [ pdf ] |
[18] | F. H. J. Kenter and J. C.-H. Lin. On the error of a priori sampling: Zero forcing sets and propagation time. Linear Algebra Appl., 576:124--141, 2019. [ pdf ] |
[17] | C. A. Alfaro and J. C.-H. Lin. Critical ideals, minimum rank and zero forcing number. Appl. Math. Comput., 358:305--313, 2019. [ pdf ] |
[16] | J. C.-H. Lin. Zero forcing number, Grundy domination number, and their variants. Linear Algebra Appl., 563:240--254, 2019. [ pdf ] |
[15] | Y.-J. Cheng and J. C.-H. Lin. Graph families with constant distance determinant. Electron. J. Combin., 25:#P4.45, 2018. [ pdf ] |
[14] | R. Anderson, S. Bai, F. Barrera-Cruz, É. Czabarka, G. Da Lozzo, N. L. F. Hobson, J. C.-H. Lin, A. Mohr, H. C. Smith, L. A. Székely, and H. Whitlatch. Analogies between the crossing number and the tangle crossing number. Electron. J. Combin., 25:#P4.24, 2018. [ pdf ] |
[13] | G. Aalipour, A. Abiad, Z. Berikkyzy, L. Hogben, F. H. J. Kenter, J. C.-H. Lin, and M. Tait. Proof of a conjecture of Graham and Lovász concerning unimodality of coefficients of the distance characteristic polynomial of a tree. Electron. J. Linear Algebra, 34:373--380, 2018. [ pdf ] |
[12] | J. C.-H. Lin, D. D. Olesky, and P. van den Driessche. Sign patterns requiring a unique inertia. Linear Algebra Appl., 546:67--85, 2018. [ pdf ] |
[11] | W. Barrett, S. M. Fallat, H. T. Hall, L. Hogben, J. C.-H. Lin, and B. Shader. Generalizations of the Strong Arnold Property and the minimum number of distinct eigenvalues of a graph. Electron. J. Combin., 24:#P2.40, 2017. [ pdf ] |
[10] | A. Berliner, C. Bozeman, S. Butler, M. Catral, L. Hogben, B. Kroschel, J. C.-H. Lin, N. Warnberg, and M. Young. Zero forcing propagation time on oriented graphs. Discrete Appl. Math., 224:45--59, 2017. [ pdf ] |
[9] | M. Dairyko, L. Hogben, J. C.-H. Lin, J. Lockhart, D. Roberson, S. Severini, and M. Young. Note on von Neumann and Rényi entropies of a graph. Linear Algebra Appl., 521:240--253, 2017. [ pdf ] |
[8] | J. C.-H. Lin. Using a new zero forcing process to guarantee the Strong Arnold Property. Linear Algebra Appl., 507:229--250, 2016. [ pdf ] |
[7] | S. Butler, C. Erickson, L. Hogben, K. Hogenson, L. Kramer, R. L. Kramer, J. C.-H. Lin, R. R. Martin, D. Stolee, N. Warnberg, and M. Young. Rainbow arithmetic progressions. J. Comb., 7:595--626, 2016. [ pdf ] |
[6] | G. Aalipour, A. Abiad, Z. Berikkyzy, J. Cummings, J. De Silva, W. Gao, K. Heysse, L. Hogben, F. H. J. Kenter, J. C.-H. Lin, and M. Tait. On the distance spectra of graphs. Linear Algebra Appl., 497:66--87, 2016. [ pdf ] |
[5] | J. C.-H. Lin. Odd cycle zero forcing parameters and the minimum rank of graph blowups. Electron. J. Linear Algebra, 31:42--59, 2016. [ pdf ] |
[4] | C. Bozeman, A. Ellsworth, L. Hogben, J. C.-H. Lin, G. Maurer, K. Nowak, A. Rodriguez, and J. Strickland. Minimum rank of graphs with loops. Electron. J. Linear Algebra, 27:907--934, 2014. [ pdf ] |
[3] | J. C.-H. Lin. The sieving process and lower bounds for the minimum rank problem. Congr. Numer., 219:73--88, 2014. [ pdf ] |
[2] | G. J. Chang and J. C.-H. Lin. Counterexamples to an edge spread question for zero forcing number. Linear Algebra Appl., 446:192--195, 2014. [ pdf ] |
[1] | J. C.-H. Lin. Some interpretations and applications of Fuss-Catalan numbers. ISRN Discrete Math., 2011. doi:10.5402/2011/534628. [ pdf ] |
[2] | L. Hogben, J. C.-H. Lin, and M. Young. Multi-part Nordhaus-Gaddum type problems for tree-width, Colin de Verdière type parameters, and Hadwiger number. http://arxiv.org/abs/1604.08817. (under review). [ pdf ] |
[1] | G. J. Chang and J. C.-H. Lin. Minimum rank of powers of cycles and trees. (under review). [ pdf ] |
[3] | L. Hogben, J. C.-H. Lin, and B. Shader. Inverse Problems and Zero Forcing for Graphs. American Mathematical Society, Providence, 2022. [ pdf ] |
[2] | S. M. Fallat, L. Hogben, J. C.-H. Lin, and B. Shader. The inverse eigenvalue problem of a graph, zero forcing, and related parameters. Notices Amer. Math. Soc., 67:257--261, February, 2020. [ pdf ] |
[1] | L. Hogben, J. C.-H. Lin, and B. Shader. The inverse eigenvalue problem of a graph. In 50 Years of Combinatorics, Graph Theory, and Computing, 1st edition, F. Chung, R. Graham, F. Hoffman, L. Hogben, R. C. Mullin, and D. B. West editors, CRC Press, Boca Raton, 2019. [ pdf ] |
[1] | 2017 “Variants of Zero Forcing,” AIM Workshop: Zero forcing and its applications, San Jose, CA. [ pdf ] |