分配律、拉普拉斯展開¶

Distributive law and Laplace expansion

Creative Commons License
This work by Jephian Lin is licensed under a Creative Commons Attribution 4.0 International License.

$\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\idmap}{\operatorname{id}} \newcommand{\am}{\operatorname{am}} \newcommand{\gm}{\operatorname{gm}} \newcommand{\mult}{\operatorname{mult}} \newcommand{\iner}{\operatorname{iner}}$

In [ ]:
from lingeo import random_int_list

Main idea¶

The determinant function satisfies the distributive law on each row.
That is,

$$ \det\begin{bmatrix} - & \ba\trans + \bb\trans & - \\ - & \br_2\trans & - \\ ~ & \vdots & ~ \\ - & \br_n\trans & - \end{bmatrix} = \det\begin{bmatrix} - & \ba\trans & - \\ - & \br_2\trans & - \\ ~ & \vdots & ~ \\ - & \br_n\trans & - \end{bmatrix} + \det\begin{bmatrix} - & \bb\trans & - \\ - & \br_2\trans & - \\ ~ & \vdots & ~ \\ - & \br_n\trans & - \end{bmatrix}. $$

Since one may swap two rows or take the transpose without chaning the determinant, the distributive law holds for any row and any column.

If we think of the determinant $\det(A)$ as a function on $n$ row vectors $f(\br_1,\ldots,\br_n)$,
then $f$ is linear on each vector individually.
That is,

$$ \begin{aligned} f( \ldots, \ba + \bb, \ldots ) &= f( \ldots, \ba, \ldots ) + f( \ldots, \bb, \ldots ), \\ f( \ldots, k\ba, \ldots ) &= k f( \ldots, \ba, \ldots ). \end{aligned} $$

A function with this property is said to be multilinear.

Let $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ be an $n\times n$ matrix.
Let $\br_1, \ldots, \br_n$ be the rows of $A$.
Define $A(i,j)$ as the submatrix obtained from $A$ by removing the $i$-th row and the $j$-th column.

By expanding the first row, we have

$$ \begin{aligned} \det(A) &= \det\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ - & \br_2\trans & - \\ ~ & \vdots & ~ \\ - & \br_n\trans & - \end{bmatrix} \\ &= \det\begin{bmatrix} a_{11} & 0 & \cdots & ~ & 0 \\ - & ~ & \br_2\trans & ~ & - \\ ~ & ~ & \vdots & ~ & ~ \\ - & ~ & \br_n\trans & ~ & - \end{bmatrix} + \det\begin{bmatrix} 0 & a_{12} & 0 & \cdots & 0 \\ - & ~ & \br_2\trans & ~ & - \\ ~ & ~ & \vdots & ~ & ~ \\ - & ~ & \br_n\trans & ~ & - \end{bmatrix} + \det\begin{bmatrix} 0 & \cdots & ~ & 0 & a_{1n} \\ - & ~ & \br_2\trans & ~ & - \\ ~ & ~ & \vdots & ~ & ~ \\ - & ~ & \br_n\trans & ~ & - \end{bmatrix} \\ &= a_{11}\det A(1,1) - a_{12}\det A(1,2) + \cdots + (-1)^{1+n}a_{1n}\det A(1,n). \end{aligned} $$

Again, this formula works for any row and column.
We may expand the $i$-th row and get

$$ \det(A) = \sum_{j=1}^n (-1)^{i + j} a_{ij} \det A(i,j). $$

The formula for expanding a column is similar.
This identity is called the Laplace expansion.

Side stories¶

  • variable matrix
  • differentiation

Experiments¶

Exercise 1¶

執行以下程式碼。

Run the code below.

In [ ]:
### code
set_random_seed(0)
print_ans = False

n = 4
A = matrix(n, random_int_list(n^2,3))

expr = []
dets = []
for j in range(n):
    expr.append(LatexExpr(r"\det"))
    B = copy(A)
    for k in range(n):
        if k != j:
            B[0,k] = 0
    dets.append(B.det())
    expr.append(copy(B))
    if j != n-1:
        expr.append(LatexExpr("+"))
    
print("n =", n)
pretty_print(LatexExpr(r"\det"), A, LatexExpr("="), *expr)

if print_ans:
    print("%s = "%A.det() + " + ".join("%s"%d for d in dets))
Exercise 1(a)¶

對每一個 $j = 1, ..., n$,
計算 $\det A(1,j)$。

For each $j = 1, ..., n$, find $\det A(1,j)$.

Exercise 1(b)¶

計算題目給的等式中的每一個行列式值、
並驗證等式成立。

Calculate each term in the equality and verify the equality holds.

Exercises¶

Exercise 2¶

以下題目探討矩陣中單一一項對行列式值的影響。

The following problem studies how an entry of a matrix changees the determinant.

Exercise 2(a)¶

令

$$ A = \begin{bmatrix} 1 + x & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}. $$

求 $\det(A)$。

Let

$$ A = \begin{bmatrix} 1 + x & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}. $$

Find $\det(A)$.

Exercise 2(b)¶

觀察到

$$ (1+x,2,3) = (1,2,3) + (x,0,0). $$

利用這個性質,
將 $\det(A)$ 的常數項寫成一個 $3\times 3$ 矩陣的行列式值、
並將其一次項寫成一個 $2\times 2$ 矩陣的行列式值。

Use the fact that

$$ (1+x,2,3) = (1,2,3) + (x,0,0) $$

to write $\det(A)$ as a polynomial of degree $2$ such that its constant term is the determinant of a $3\times 3$ matrix while its linear term is the determinant of a $2\times 2$ matrix.

Exercise 2(c)¶

把 $\det(A)$ 看成 $x$ 的函數,求 $\frac{d\det(A)}{dx}$。

搭配上一題,
這說明當一個矩陣 $A$ 的 $i,j$-項增加 $x$ 的時候,
其行列式值會增加 $x\cdot (-1)^{i+j}\det A(i,j)$。

Consider $\det(A)$ as a function of $x$. Find $\frac{d\det(A)}{dx}$.

Use the result of the previous problem, explain the determinant of $A$ increases by $x\cdot (-1)^{i+j}\det A(i,j)$ when its $i,j$-entry increases by $x$.

Exercise 3¶

對以下 $n\times n$ 矩陣,
將每列寫成兩個向量相加,
其中一個向量只有常數,另一個向量只有 $x$。

如此可以將 $\det(A)$ 寫成 $2^n$ 個行列式值相加。
計算這些行列式值並計算 $\det(A)$。

For each of the following $n\times n$ matrix, write each row as the sum of two vectors, where one is composed of constants only, while the other is composed of linear terms.

Thus, we may write $\det(A)$ as the sum of $2^n$ determinants. Calculate each of them to find $\det(A)$.

Exercise 3(a)¶
$$ A = \begin{bmatrix} 1 - x & 2 \\ 3 & 4 - x \end{bmatrix}. $$
Exercise 3(b)¶
$$ A = \begin{bmatrix} 1 - x & 2 & 3 \\ 4 & 5 - x & 6 \\ 7 & 8 & 9 - x \end{bmatrix}. $$
Exercise 4¶

令
$$ A = \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & \ell \\ m & n & o & p \end{bmatrix}. $$ 求 $\det(A)$。

Exercise 5¶

給定向量 $\ba$、$\bb$、以及 $\br_2,\ldots,\br_n$。
令

$$ M = \begin{bmatrix} - & \ba\trans + \bb\trans & - \\ - & \br_2\trans & - \\ ~ & \vdots & ~ \\ - & \br_n\trans & - \end{bmatrix} ,\quad A = \begin{bmatrix} - & \ba\trans & - \\ - & \br_2\trans & - \\ ~ & \vdots & ~ \\ - & \br_n\trans & - \end{bmatrix} ,\text{ and}\quad B = \begin{bmatrix} - & \bb\trans & - \\ - & \br_2\trans & - \\ ~ & \vdots & ~ \\ - & \br_n\trans & - \end{bmatrix}. $$

依照以下步驟證明行列式值的分配律 $\det(M) = \det(A) + \det(B)$。

Let $\ba$, $\bb$, and $\br_2, \ldots, \br_n$ be some vectors.
Let

$$ M = \begin{bmatrix} - & \ba\trans + \bb\trans & - \\ - & \br_2\trans & - \\ ~ & \vdots & ~ \\ - & \br_n\trans & - \end{bmatrix} ,\quad A = \begin{bmatrix} - & \ba\trans & - \\ - & \br_2\trans & - \\ ~ & \vdots & ~ \\ - & \br_n\trans & - \end{bmatrix} ,\text{ and}\quad B = \begin{bmatrix} - & \bb\trans & - \\ - & \br_2\trans & - \\ ~ & \vdots & ~ \\ - & \br_n\trans & - \end{bmatrix}. $$

Follow the steps below to show the distributive law of the determinant, that is, $\det(M) = \det(A) + \det(B)$.

Exercise 5(a)¶

證明當 $\{\br_2,\ldots,\br_n\}$ 線性相依的時候,$\det(M) = \det(A) = \det(B) = 0$。
因此等式成立。

Show that $\det(M) = \det(A) = \det(B) = 0$ when $\{\br_2,\ldots,\br_n\}$ is linearly dependent, so the equality holds.

Exercise 5(b)¶

假設 $\{\br_2,\ldots,\br_n\}$ 線性獨立。
找一個向量 $\br_1$ 使得 $\beta = \{\br_1,\br_2,\ldots,\br_n\}$ 是 $\mathbb{R}^n$ 的一組基底。
因此可以將 $\ba$ 和 $\bb$ 寫成 $\beta$ 的線性組合:

$$ \begin{aligned} \ba &= a_1\br_1 + \cdots + a_n\br_n \\ \bb &= b_1\br_1 + \cdots + b_n\br_n \end{aligned} $$

藉由列運算說明行列式值的分配律成立。

Suppose $\{\br_2,\ldots,\br_n\}$ is linearly independent. Find a vector $\br_1$ such that $\beta = \{\br_1,\br_2,\ldots,\br_n\}$ is a basis of $\mathbb{R}^n$. Thus, both $\ba$ and $\bb$ can be written as linear combinations of $\beta$:

$$ \begin{aligned} \ba &= a_1\br_1 + \cdots + a_n\br_n \\ \bb &= b_1\br_1 + \cdots + b_n\br_n \end{aligned} $$

Use row operations to show the distributive law in this case.