垂直子空間¶

Direct sum of orthogonal subspaces

Creative Commons License
This work by Jephian Lin is licensed under a Creative Commons Attribution 4.0 International License.

$\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\idmap}{\operatorname{id}} \newcommand{\am}{\operatorname{am}} \newcommand{\gm}{\operatorname{gm}} \newcommand{\mult}{\operatorname{mult}} \newcommand{\iner}{\operatorname{iner}}$

In [ ]:
from lingeo import random_int_list, random_good_matrix, kernel_matrix

Main idea¶

Let $U$ and $V$ be two subspaces under the same inner product space.
We say $U$ and $V$ are orthogonal if $\inp{\bu}{\bv} = 0$ for any $\bu\in U$ and $\bv\in V$.
Similarly, we say a collection of subspaces $\{V_1,\ldots,V_k\}$ is orthogonal if they are pairwisely orthogonal.

If $\{V_1,\ldots,V_k\}$ is orthogonal and none of them are $\{\bzero\}$, then they are necssarily independent.
Therefore, we have the direct sum $V_1 \oplus \cdots \oplus V_k$.
Suppose $V = V_1 \oplus \cdots \oplus V_k$.
Then every vector $\bv\in V$ can be uniquely written as $\bv = \bv_1 + \cdots + \bv_k$ with $\bv_i\in V_i$ for each $i = 1,\ldots,k$.

Let $A$ be an $m\times n$ matrix.
We have seen several cases of mutually orthogonal subspaces related to $A$.
With the new terminology, we may safely say:

  1. The subspaces $\Row(A)$ and $\ker(A)$ are orthogonal, and $\mathbb{R}^n = \Row(A) \oplus \ker(A)$.
  2. The subspaces $\Col(A)$ and $\ker(A\trans)$ are orthogonal, and $\mathbb{R}^m = \Col(A) \oplus \ker(A\trans)$.

Suppose $V$ is a subspace in $\mathbb{R}^n$.
We also have $\mathbb{R}^n = V \oplus V^\perp$.

Side stories¶

  • projection matrix

Experiments¶

Exercise 1¶

執行以下程式碼。
已知 $R$ 為 $A$ 的最簡階梯形式矩陣。

Run the code below. Let $R$ be the reduced echelon form of $A$.

In [ ]:
### code
set_random_seed(0)
print_ans = False
m,n,r = 2,4,2
A = random_good_matrix(m,n,r)
R = A.rref()
H = kernel_matrix(R)
c = random_int_list(2, r=3)
b = c[0]*R[0] + c[1]*H.transpose()[0]

print("A =")
show(A)
print("R =")
show(R)
print("b = ", b)

if print_ans:
    r = c[0]*R[0]
    h = c[1]*H.transpose()[0]
    print("r =", r)
    print("h =", h)
    print("|b|^2 =", b.norm()**2)
    print("|r|^2 + |h|^2 = %s + %s = %s"%(r.norm()**2, h.norm()**2, r.norm()**2 + h.norm()**2))
Exercise 1(a)¶

將 $\bb$ 寫成 $\br + \bh$
其中 $\br\in\Row(A)$ 而 $\bh\in\ker(A)$。

Write $\bb$ as $\br + \bh$ such that $\br\in\Row(A)$ and $\bh\in\ker(A)$.

Exercise 1(b)¶

證驗 $\br$ 和 $\bh$ 垂直﹐
而且 $\|\bb\|^2 = \|\br\|^2 + \|\bh\|^2$。

Verify that $\br$ and $\bh$ are orthogonal and $\|\bb\|^2 = \|\br\|^2 + \|\bh\|^2$.

Exercise 1(c)¶

因為每一個 $\mathbb{R}^n$ 中的向量都可以分解成 $\br\in\Row(A)$ 和 $\bh\in\ker(A)$ 中的向量相加。
說明對任何 $m\times n$ 矩陣都有

$$ \{A\bx: \bx\in\mathbb{R}^n \} = \{ A\br : \br\in\Row(A)\}. $$

Since any vector in $\mathbb{R}^n$ can be written as the sum of vectors $\br\in\Row(A)$ and $\bh\in\ker(A)$. Show that

$$ \{A\bx: \bx\in\mathbb{R}^n \} = \{ A\br : \br\in\Row(A)\}. $$

for any $m\times n$ matrix $A$.

Exercises¶

Exercise 2¶

令 $S = \{V_1,\ldots,V_k\}$ 為一群子空間。
證明若 $S$ 是垂直的集合且 $S$ 不包含 $\{\bzero\}$﹐則 $S$ 線性獨立。

Let $S = \{V_1,\ldots,V_k\}$ be a family of subspaces. Show that if $S$ is orthogonal and none of its elements is $\{\bzero\}$, then $S$ is linearly independent.

Exercise 3¶

若 $S = \{V_1, V_2, V_3\}$ 垂直。
令 $V = V_1 \oplus V_2 \oplus V_3$、
$P$ 為 $V$ 的投影矩陣、
$P_1,P_2,P_3$ 分別為 $V_1,V_2,V_3$ 的投影矩陣。

Suppose $S = \{V_1,\ldots,V_k\}$ is an orthogonal set of subspaces. Let $V = V_1 \oplus V_2 \oplus V_3$, $P$ the projection matrix onto $V$, and $P_1, P_2, P_3$ the projection matrices onto $V_1, V_2, V_3$, respectively.

Exercise 3(a)¶

說明 $P_1P_2 = P_2P_1$。

Give some intuition of why $P_1P_2 = P_2P_1$.

Exercise 3(b)¶

說明 $P = P_1 + P_2 + P_3$。

Give some intuition of why $P = P_1 + P_2 + P_3$.

Exercise 3(c)¶

若 $V = \mathbb{R}^n$ 為全空間。
說明 $I_n = P_1 + P_2 + P_3$。

Suppose $V = \mathbb{R}^n$ is the whole space. Show that $I_n = P_1 + P_2 + P_3$.

Exercise 4¶

依照步驟證明以下敘述等價:

  1. $P$ 是某個空間的投影矩陣。
  2. $P$ 對稱、而且 $P = P^2$。

Use the given instructions to show that the following are equivalent:

  1. $P$ is the projection matrix onto some subspace.
  2. $P$ is symmetric and $P = P^2$.
Exercise 4(a)¶

證明若 $P$ 是一個投影矩陣﹐
則 $P$ 是 $\Col(P)$ 的投影矩陣。
因此如果 $\bu\in\Col(P)$ 則 $P\bu = \bu$、
如果 $\bu\in\ker(P\trans)$ 則 $P\bu = \bzero$、
同時每個向量都可以分成 $\bu = P\bu + (I - P)\bu$
使得 $P\bu\in\Col(P)$ 且 $(I - P)\bu\in\ker(P\trans)$。

藉由這些性質說明如果條件一成立則條件二成立。

If $P$ is a projection matrix, then $P$ is the projection matrix onto $\Col(P)$. Therefore, $P\bu = \bu$ if $\bu\in\Col(P)$ and $P\bu = \bzero$ if $\bu\in\ker(P\trans)$. Also, every vector can be written as $\bu = P\bu + (I - P)\bu$ such that $P\bu\in\Col(P)$ and $(I - P)\bu\in\ker(P\trans)$.

Justify these statements and use them to show that Condition 1 implies Condition 2.

Exercise 4(b)¶

若 $P$ 對稱且 $P = P^2$。
說明 $\mathbb{R}^n = \Col(P) \oplus \ker(P)$ 且
如果 $\bu\in\Col(P)$ 則 $P\bu = \bu$、
如果 $\bu\in\ker(P)$ 則 $P\bu = \bzero$。

藉由這些性質說明如果條件二成立則條件一成立。

Suppose $P$ is a symmetric matrix and $P = P^2$. Then $\mathbb{R}^n = \Col(P) \oplus \ker(P)$. Also, $P\bu = \bu$ if $\bu\in\Col(P)$ and $P\bu = \bzero$ if $\bu\in\ker(P)$.

Justify these statements and use them to show that Condition 2 implies Condition 1.

Exercise 5¶

證明若 $V = V_1 \oplus \cdots \oplus V_k$﹐
則每一個向量 $\bv\in V$ 都可以被寫成 $\bv = \bv_1 + \cdots + \bv_k$﹐
使得對每一個 $i = 1,\ldots,k$ 都有 $\bv_i\in V_i$﹐
而且這種寫法唯一。

Show that if $V = V_1 \oplus \cdots \oplus V_k$, then every vector $\bv\in V$ can be written as $\bv = \bv_1 + \cdots + \bv_k$ such that $\bv_i\in V_i$ for each $i = 1, \ldots, k$. Moreover, such a representation is unique.

Exercise 6¶

利用垂直空間分解母空間的現象在其它向量空間也很常見。

It is also common to see other vector spaces being decomposed into orthogonal subspaces.

Exercise 6(a)¶

令 $U = \mathcal{M}_{n\times n}$ 為一向量空間,搭配內積 $\inp{A}{B} = \tr(B\trans A)$。
令 $V$ 為 $U$ 中所有對稱矩陣的集合、
令 $W$ 為 $U$ 中所有反對稱矩陣的集合。
說明 $\{V, W\}$ 垂直且 $U = V \oplus W$。

Let $U = \mathcal{M}_{n\times n}$ be the vector space equipped with the inner product $\inp{A}{B} = \tr(B\trans A)$. Let $V$ be the subspace of $U$ consisting of all symmetric matrices. Let $W$ be the subspace of $U$ consisting of all skew-symmetric matrices. Show that $\{V, W\}$ is orthogonal and $U = V \oplus W$.

Exercise 6(a)¶

令 $U = \mathcal{P}_{d}$ 為一向量空間,搭配內積

$$ \inp{a_0 + a_1x + \cdots + a_dx^d}{b_0 + b_1x + \cdots + b_dx^d} = a_0b_0 + a_1b_1 + \cdots + a_db_d. $$

令 $V$ 為 $U$ 中所有偶函數的集合、
令 $W$ 為 $U$ 中所有奇函數的集合。
說明 $V$ 和 $W$ 垂直且 $U = V \oplus W$。

Let $U = \mathcal{P}_{d}$ be the vector space equipped with the inner product

$$ \inp{a_0 + a_1x + \cdots + a_dx^d}{b_0 + b_1x + \cdots + b_dx^d} = a_0b_0 + a_1b_1 + \cdots + a_db_d. $$

Let $V$ be the subspace of $U$ consisting of all even functions. Let $W$ be the subspace of $U$ consisting of all odd functions. Show that $\{V, W\}$ is orthogonal and $U = V \oplus W$.