Solution set of Ax=b
This work by Jephian Lin is licensed under a Creative Commons Attribution 4.0 International License.
\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\idmap}{\operatorname{id}} \newcommand{\am}{\operatorname{am}} \newcommand{\gm}{\operatorname{gm}} \newcommand{\mult}{\operatorname{mult}} \newcommand{\iner}{\operatorname{iner}}
from lingeo import random_int_list, random_ref
Let A be an m\times n matrix and \bb a vector in \mathbb{R}^n.
Recall that A\bx = \bb is equivalent to a system of linear equation.
When \bb = \bzero, the system is said to be homogeneous, and
\ker(A) = \{\bx\in\mathbb{R}^n : A\bx = \bzero\}.
Let U = \{\bx\in\mathbb{R}^n : A\bx = \bb\} be the set of all solutions.
Then U is an affine subspace in \mathbb{R}^n.
In fact, U can be written as \bp + \ker(A), where \bp can be any vector in U.
We call U the set of general solutions.
When one element is chosen from U, it is called a particular solution.
And \ker(A) is called the set of homogeneous solutions.
Equivalently, the solutions set of A\bx = \bb is of the form:
general solutions = particular solution + homogeneous solutions
(a shifted space) (a vector) (a space)
A.nullspace()
### code
set_random_seed(0)
print_ans = False
A = random_ref(3,5,2)
p = vector(random_int_list(5))
b = A * p
h = A.right_kernel().basis()[0]
p1 = p + h
print("A =")
show(A)
print("b =", b)
print("p =", p)
print("h =", h)
print("p1 =", p1)
利用題目給的向量及矩陣,
確認 \bh 在 \ker(A) 中。
計算 \bp + \bh 並驗證它符合 A(\bp + \bh) = \bb。
Use the given vectors and matrix and double-check if \bh is in \ker(A). Then compute \bp + \bh and verify A(\bp + \bh) = \bb.
如果已知 A\bp = \bb。
證明對任意 \ker(A) 中的向量 \bh﹐
都有 A(\bp + \bh) = \bb。
Suppose A\bp = \bb. Show that A(\bp + \bh) = \bb for any \bh\in\ker(A).
利用題目給的向量及矩陣,
確認它符合 A\bp_1 = \bb。
計算 \bp_1 - \bp 並驗證它在 \ker(A) 中。
Use the given vectors and matrix and double-check if A\bp_1 = \bb. Then compute \bp_1 - \bp and verify it is in \ker(A).
如果已知 A\bp = \bb。
證明對任意符合 A\bp_1 = \bb 的向量 \bp_1﹐
都有 \bp_1 - \bp\in\ker(A)。
Suppose A\bp = \bb. Show that \bp_1 - \bp\in\ker(A) for any \bp_1 satisfying A\bp_1 = \bb.
給定矩陣 A 和向量 \bb。
令 U = \{ \bx: A\bx = \bb \}。
證明 V = \{ \bp_1 - \bp_2 : \bp_1, \bp_2 \in U \} 是一個子空間。
(因此 U 是一個仿射子空間。)
Let A be a matrix and \bb a vector. Let U = \{ \bx: A\bx = \bb \}. Show that V = \{ \bp_1 - \bp_2 : \bp_1, \bp_2 \in U \} is a subspace. (Therefore, U is an affine subspace.)
### code
set_random_seed(0)
A = random_ref(3,5,2)
b = vector(random_int_list(2) + [0])
b1 = b + vector([0,0,1])
print("A =")
show(A)
print("b =", b)
print("b1 =", b1)
湊出一個 A\bx = \bb 的解,稱之作 \bp。
Try any method to find a solution to A\bx = \bb. Let's call it \bp.
利用參數式的方法找出 \bh_1、\bh_2、\bh_3
使得 \ker(A) = \vspan(\{\bh_1, \bh_2, \bh_3\})。
Parametrize the equations to find \bh_1, \bh_2, and \bh_3 so that \ker(A) = \vspan(\{\bh_1, \bh_2, \bh_3\}).
說明 A\bx = \bb_1 無解。
(儘管 \ker(A) 中有很多向量。)
Explain why A\bx = \bb_1 has no solution, even if \ker(A) has infinitely many vectors.
我們現階段對解集合的理解
已經可以告訴我們一些有趣的性質。
Based on what we have so far, we have the following interesting properties.
令 V 為一子空間。
若 V 中至少有兩個向量,
V 中向量的個數是否有可能是有限個?
Let V be a subspace. If V contains at least two vectors, is it possible that V contains only finitely many vectors?
若 A\bx = \bb 至少有兩個解,
全部解的個數是否有可能是有限個?
If A\bx = \bb contains at least two vector, is it possible that the equation has only finitely many solutions?